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Prediction of installed jet noise
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A semianalytical model for installed jet noise is proposed in this paper. We argue
and conclude that there exist two distinct sound source mechanisms for installed jet
noise, and the model is therefore composed of two parts to account for these different
sound source mechanisms. Lighthill’s acoustic analogy and a fourth-order space–time
correlation model for the Lighthill stress tensor are used to model the sound induced
by the equivalent turbulent quadrupole sources, while the trailing-edge scattering
of near-field evanescent instability waves is modelled using Amiet’s approach. A
non-zero ambient mean flow is taken into account. It is found that, when the rigid
surface is not so close to the jet as to affect the turbulent flow field, the trailing-edge
scattering of near-field evanescent waves dominates the low-frequency amplification
of installed jet noise in the far-field. The high-frequency noise enhancement on the
reflected side is due to the surface reflection effect. The model agrees well with
experimental results at different observer angles, apart from deviations caused by the
mean-flow refraction effect at high frequencies at low observer angles.
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1. Introduction
Aircraft noise is believed to be one of the most commonly reported residential

disturbances (Pepper, Nascarella & Kendall 2003). Among the different noise sources,
jet noise is found to be the dominant component at takeoff. For the past few decades,
jet noise has been one of the most heavily investigated subjects and the outcome has
been quite successful. However, it is worth noting that the vast majority of research
work during this time is for an isolated nozzle and jet. But the realistic configuration
of a modern aircraft often involves the jet engines installed below the aircraft wings,
as shown in figure 1. The effects of wings and other high-lift devices on the jet noise
are often referred to as jet installation effects, and the resulting jet is commonly
called an installed jet and compared to the isolated jet. Research has shown that
the presence of solid boundaries can greatly affect acoustic source behaviours (Curle
1955; Williams & Hall 1970). Consequently, the close presence of aircraft wings
can significantly alter the jet noise heard in the far-field (Bushell 1975; Fisher,
Harper-Bourne & Glegg 1977; Way & Turner 1980; Shearin 1983). Investigation
into the installed jet noise has been, however, rather limited. In particular, there
is a general lack of reliable prediction models and also of understanding of the
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FIGURE 1. The schematic illustration of an installed engine. The distance between the
jet centreline and the under surface of the wing is denoted by H while the axial distance
between the nozzle exit and the trailing edge of the flap is denoted by L.

noise modification mechanism. This paper aims to contribute to bridging that gap: to
develop a reliable model that can predict the installed jet noise and to advance the
understanding of the noise amplification mechanism.

For the configuration shown in figure 1, there are two important geometric
parameters defining the position of the engine relative to the wing: the distance
H between the jet centreline and the wing surface, and the distance L between jet
nozzle and the trailing edge of the flap. As far as the installed jet noise is concerned,
one expects the jet operating condition to have an important impact on the sound
radiated to the far-field, as described by the jet nozzle diameter D, the jet exit velocity
V , the jet spread rate β and the temperature ratio Tr in the case of hot jets. In this
paper, the impact of varying H and L on the far-field noise will be referred to as
the engine position effect, while that of varying D, V and β will be called the jet
condition effect. When the flap is deployed, the flap length F, the deflected angle
α and the width W of flap cut-out in a real flight vehicle have influences on the
installed jet noise, and this is similarly given the name the flap position effect.

The extra noise produced by an installed engine was first noticed by Bushell
(1975), who compared the in-flight installed jet noise with the static isolated jet
noise for a full-scale aircraft. Many investigations followed, and they fall roughly
into three categories: identifying installed noise sources by studying the acoustic
characteristics of an installed jet, the engine position, jet condition and flap position
effects; developing installed jet noise prediction models; and investigating noise
reduction techniques. The first category includes the experimental work of Head &
Fisher (1976), Szewczyk (1979), Way & Turner (1980), Shearin (1983), Mead &
Strange (1998) and Brown (2013). Through their experimental work, it was found
that increasing H results in less noise at low frequencies, while decreasing L follows
the same trend and raises the frequency of maximum augmentation due to installation
effects. The velocity dependence of the peak of this low-frequency augmentation
is to the fifth to sixth power. It was also confirmed that the low-frequency noise
enhancement has a dipole-like directivity pattern. The numerical work carried out by
Bondarenko, Hu & Zhang (2012) also falls into the first category, and sheds more
light on the understanding of installed jet noise via flow field visualization.

In conjunction with the above experimental and numerical studies of installed
jet noise characteristics, attempts to develop prediction models for installed jet
noise have also been made. These include the work by Sengupta (1983), Stevens,
Bryce & Szewczyk (1983), Bhat & Blackner (1998) and Moore (2004). With the
exception of Moore’s model, which is based on three-dimensional ray theory and jet
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blockage profiles, and gives encouraging results at high frequencies, the prediction
models proposed at this time were generally empirical, i.e. by fitting experimental
data or superimposing parametric changes heuristically. Thus, these models were
inherently unable to capture detailed characteristics of installed jet noise correctly or
to enhance physical understanding of the mechanisms. However, very recently some
less-empirical models were proposed, including the work of Vera, Self & Kingan
(2015) and Piantanida et al. (2015). In Vera’s work, for an assumed plane-wave-like
incident field, the scattered pressure on the surface of a semi-infinite flat plate is
obtained by making use of the Wiener–Hopf method and the far-field sound is
obtained using Amiet’s approach. However, the proposed form of the statistical
spectrum of ‘the incident field required to calculate the far-field sound is hard to
obtain in experimental measurements’. In addition, the ambient flow (non-trivial in
a real flight certification process) is neglected in their modelling. Piantanida et al.
(2015) adopted another approach in their work, where the half-plane scattering
Green’s function and an inferred near-field pressure source of the wave-packet form
were used. The far-field sound is obtained by performing numerical integration.
Both experimental measurements and numerical model predictions for low-frequency
installed jet noise were presented, and ‘a good overall agreement with the experiments
in terms of the dependence of the radiated levels and directivity on the radial jet-plate
separation and sweep angle’ is achieved. In Piantanida’s work, a boundary element
method (BEM) calculation is also performed as a validation for the Green’s function
approach. The same technique was used earlier by Papamoschou (2010) to predict
the jet noise shielding effects with an inferred wavepackage and a monopole as
sources. Reasonable results were obtained, with limitations at high frequencies caused
by the deterministic characteristics of the sound sources. Attempts trying to reduce
the installation effects of jet noise, as characterized by the third category, were
first made by Wang (1981). In his paper, Wang reported an experimental test of jet
noise performed on wing models made of materials with different acoustic surface
properties. The experimental results showed that wing models with specially treated
surfaces can substantially reduce the noise enhancement at high frequencies. Of
practical interest, it was mentioned by Piantanida et al. (2015) that, if the wing is
swept, the installed jet noise can be reduced effectively, and the larger the swept
angle is, the more the sound is reduced.

Hitherto, there has been little doubt about the mechanism of installation effects on
noise at high frequencies: the noise is generated by small-scale eddies in the jet and
reflected off the wing and flap surface; the reflected noise is refracted and attenuated
by the presence of the turbulent jet plume. On the other hand, the noise mechanism at
low frequencies has not been accepted unanimously. One of the proposed ideas was
that the noise is due to the trailing-edge scattering, while Shearin (1983) suggested
a jet–surface interaction mechanism and Pastouchenko & Tam (2007) argued that
it is the downwash effect of the wing flap causing more turbulence in the jet that
is the principal mechanism. However, examination of the acoustic properties of the
low-frequency installed noise and its dependence on the engine position, jet condition
and flap position leads one to believe that the dominant effect is the trailing-edge
noise. This is because the dipole characteristics are in agreement with the observed
directivity pattern of trailing-edge noise at low frequencies (Amiet 1976b; Head &
Fisher 1976; Wang 1981; Mead & Strange 1998; Roger & Moreau 2005; Bondarenko
et al. 2012; Brown 2013), decreasing L results in a reduced noise and a frequency
shift towards high frequencies (Head & Fisher 1976; Way & Turner 1980; Wang
1981; Shearin 1983; Stevens et al. 1983), there exists a high correlation between
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the pressure field near the trailing edge and the far-field sound (Head & Fisher
1976) and the dependence of sound intensity on the characteristic jet velocity is to
the fifth to sixth power (Head & Fisher 1976; Brown 2013). These trailing-edge
noise characteristics remind us of the suitability of Amiet’s approach in modelling
low-frequency installed jet noise.

Section 2 presents the detailed derivation of our hybrid model. Section 3 then
presents results based on the new model, and comparison with experimental data is
also shown. Section 4 gives a brief conclusion of this paper.

2. Model formulation
Acoustic analogy theories have long been the standard approaches to predict

jet noise, and they have proved to be sufficient in predicting isolated jet noise
(Lighthill 1952; Williams 1963; Lilley 1974; Goldstein 2003). We attempt to adopt
the same approaches to the modelling of installed jet noise. However, as we will
see in subsequent sections, conventional acoustic analogy theories fail to capture an
additional but important noise generation mechanism. Consequently, in this section we
use Lighthill’s acoustic analogy theory in conjunction with an additional near-field
scattering theory to predict the far-field sound of installed cold jets at low Mach
numbers, which naturally divides this section into two parts.

2.1. Lighthill’s acoustic analogy
In Lighthill’s original work (Lighthill 1952, 1954), turbulence-generated noise was
studied in the absence of any solid boundaries. The effect of boundaries on sound
generation aerodynamically was investigated by Curle (1955). Curle’s theory states
that the effect of a solid boundary is equivalent to a distribution of dipole sources
(unsteady force source) in addition to Lighthill’s quadrupole sources. The dipole
strength is equal to the surface pressure. Therefore, in order to use Curle’s approach
to calculate far-field sound, the pressure on the solid boundaries has to be known
beforehand. The pressure on the surface of the plate depends on the quadrupole
sources, and is difficult to obtain when the surface is non-compact, where there may
be significant phase cancellation of the sound from the dipole sources. An alternative
approach, which is much more advantageous, is that one can use the Green’s function
that satisfies the boundary conditions on the solid surfaces. Then, the far-field sound,
including both the incident field due to the quadrupole sources and the scattered field
due to solid boundaries, can be readily obtained by performing a volume integration
of the product of the Green’s function and the quadrupole sources. This is the
approach that we use in this paper.

To use the latter approach, the Green’s function satisfying the rigid-wall boundary
conditions at the upper and lower surfaces of the aircraft wing and flap needs to be
obtained. While this could be done numerically by, for example, the boundary element
method, we seek an analytical solution so that the physics of the jet–wing interaction
can be understood. Therefore, we simplify the geometry by replacing the wing–flap
system with a semi-infinite flat plate, as shown in figure 2. This is believed to be
valid especially when the acoustic wavelength is shorter than the wing size (Amiet
1976b; Roger & Moreau 2005). Then we start with the equation obtained by Lighthill
(Lighthill 1952), i.e. (

∂2

∂t2
− c2

0∇2

)
(ρ − ρ0)= ∂2Tij

∂xi∂xj
, (2.1)
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FIGURE 2. Schematic of the simplified model with a semi-infinite flat plate.

where xi (i= 1, 2, 3) denote the Cartesian coordinates shown in figure 2, ρ the fluid
density, ρ0 the ambient fluid density, c0 the speed of sound in the ambient fluid, and
Lighthill’s stress tensor has the form of

Tij = ρuiuj + pij − (ρ − ρ0)c2
0δij, (2.2)

where ui and uj are the velocity components in the i and j direction, respectively,
and pij is the stress tensor. When the Reynolds number is high, which is so for most
industrially relevant jet flows (and for many laboratory jets), the viscous terms in
Tij can be ignored (Lighthill 1952; Goldstein 2003; Karabasov et al. 2010). Also
when the mean temperature of the jet is the same as that of the ambient fluid, which
is a good approximation for cold jets at low Mach numbers, the assumption that
fluctuations in pressure are balanced out by the product of the density fluctuations
and c2

0 can be made (Lighthill 1952). Tij can thus be approximated by

Tij ≈ ρuiuj. (2.3)

In realistic full-scale tests, there exists a uniform ambient flow U in the x1 direction
due to the forward flight of the aircraft. We aim to include this ambient mean-flow
effect in our model, and to do that it is convenient to express the fluid velocity in
terms of the fluctuation velocity (relative to the background flow) ub

j , i.e. ui = ub
i +

Uδi1. Substituting this definition into (2.1), and making use of the mass conservation
equation, (2.1) can be formulated as(

∂

∂t
+U

∂

∂x1

)2

ρ ′ − c2
0∇2ρ ′ = ∂

2ρub
i ub

j

∂xi∂xj
, (2.4)

where we define the density fluctuation ρ ′ ≡ ρ − ρ0. By assuming an eiωt time
dependence, (2.4) can be written as(

iω+U
∂

∂x1

)2

ρ ′(x, ω)− c2
0∇2ρ ′(x, ω)= ∂

2T̂ij(x, ω)
∂xi∂xj

, (2.5)

where ρ ′(x, ω) and T̂ij(y, ω) are the Fourier transformations of ρ ′(x, t) and ρub
i ub

j ,
respectively.
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Note that although we subtract the ambient uniform flow U from ui, the source
term on the right-hand side of (2.5) still comprises of both linear and nonlinear
fluctuation terms. The linear terms are known to account for the jet mean-flow
refraction effects, and should be most appropriately treated as a propagation effects
rather than sources (Lighthill 1952; Lilley 1974; Goldstein 2003). We do not take the
jet mean-flow propagation effects into account. Hence, when modelling the sources on
the right-hand side of (2.5), only the nonlinear fluctuation terms (the Favre average
is used for velocities, see Goldstein (2003) for example) are used. However, one can
expect this to be acceptable both at low frequencies and for an observer at 90◦ to the
jet centreline, where the refraction effects are negligible. Now, provided the source
terms are known, (2.5) can be solved by making use of the Green’s function satisfying
appropriate boundary conditions. In the following sections, the Green’s function is
developed first, then the source term is obtained by performing computational fluid
dynamics (CFD) calculations.

2.1.1. The acoustic Green’s function
From (2.5), the Green’s function satisfies the convective wave equation(

iω+U
∂

∂x1

)2

G(x; y)− c2
0∇2G(x; y)= δ(x− y). (2.6)

This equation, together the rigid-wall boundary conditions at the upper and lower
surfaces of the flat plate, needs to be solved to obtain the Green’s function.

Letting k = ω/c0, M = U/c0, and β2 = 1 − M2, and then making the coordinate
transformation, x1= x̄1, x2= x̄2/β, x3= x̄3/β, y1= ȳ1, y2= ȳ2/β and y3= ȳ3/β, we can
show that the solution to (2.6) (satisfying the rigid-wall boundary conditions on the
upper and lower surfaces of the semi-infinite plate) can be found (Macdonald 1915;
Lyu & Dowling 2016) as

Gf = β
2 e−i(kM/β2)ȳ1

4πc2
0

(
e−i(k/β2)R

R
E(uR)+ e−i(k/β2)R′

R′
E(uR′)

)
, (2.7)

where E(x) is an error function defined by

E(x)= eiπ/4

√
π

∫ x

−∞
e−iu2

du, (2.8)

and R and R′ are given by

R=
√
(x1 − y1)2 + β2(x2 − y2)2 + β2(x3 − y3)2,

R′ =
√
(x1 + y1)2 + β2(x2 + y2)2 + β2(x3 + y3)2.

}
(2.9)

Here

uR = 2

√
kσ̄ σ̄0

β2(S+ R)
cos
(
ϕ̄ − ϕ̄0

2

)
,

uR′ = 2

√
kσ̄ σ̄0

β2(S+ R′)
cos
(
ϕ̄ + ϕ̄0

2

)
,

 (2.10)
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FIGURE 3. The schematic illustration of the stretched coordinates.

where S = √(σ̄ + σ̄0)2 + (z̄− z̄0)2 and (σ̄ , ϕ̄, z̄) and (σ̄0, ϕ̄0, z̄0) denote the
corresponding cylindrical coordinates of the observer location and sound source
location in the stretched Cartesian coordinate system (x̄1, x̄2, x̄3), respectively, as
shown in figure 3. It is straightforward to show that

σ̄ =
√

x2
1 + β2x2

3, σ̄0 =
√

y2
1 + β2y2

3,

cos(ϕ̄)= −x1

σ̄
, cos(ϕ̄0)= −y1

σ̄0
,

z̄= βx2, z̄0 = βy2.

 (2.11)

Similarly, the corresponding spherical coordinates of the observer and source positions
in the stretched coordinate system are represented by (r̄, θ̄ , ϕ̄) and (r̄0, θ̄0, ϕ̄0),
respectively.

When the far-field observer assumption is invoked, the second derivatives of the
Green’s function can be obtained as

∂2G(x; y)
∂y2

2
= A(x, y1, y2)k2D0

22(y1, y3), (2.12)

∂2G(x; y)
∂y1∂y2

= A(x, y1, y2)k2

(
D0

12(y1, y3)+
√

1
kσ̄0

D1
12(y1, y3)

)
, (2.13)

∂2G(x; y)
∂y2∂y3

= A(x, y1, y2)k2

(
D0

23(y1, y3)+
√

1
kσ̄0

D1
23(y1, y3)

)
, (2.14)

∂2G(x; y)
∂y2

1
= A(x, y1, y2)k2

×
D0

11(y1, y3)+
√

1
kσ̄0

D1
11(y1, y3)+

(√
1

kσ̄0

)3

D2
11(y1, y3)

,
(2.15)
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∂2G(x; y)
∂y2

3
= A(x, y1, y2)k2

×
D0

33(y1, y3)+
√

1
kσ̄0

D1
33(y1, y3)+

(√
1

kσ̄0

)3

D2
33(y1, y3)

,
(2.16)

∂2G(x; y)
∂y1∂y3

= A(x, y1, y2)k2

×
D0

13(y1, y3)+
√

1
kσ̄0

D1
13(y1, y3)+

(√
1

kσ̄0

)3

D2
13(y1, y3)

,
(2.17)

where

A(x, y1, y2)= β
2 e−i(k/β2)r̄ ei(kM/β2)x1

4πc2
0r̄

ei(k/β2)(−M+cos ᾱ)y1 ei(k/β) cos θ̄y2, (2.18)

and the detailed expressions for Dk
ij are shown in appendix A. The terms Dk

ij are
properly bounded functions and determine the directivity patterns of the radiation
from the corresponding quadrupoles. Therefore, the noise enhancement arises from
the terms

√
1/(kσ̄0) and

√
1/(kσ̄0)3 appearing in front of D1

ij and D2
ij, respectively.

When the frequency is sufficiently low, or the quadrupole source is sufficiently close
to the edge of the flat plate, the far-field sound is dominated by the term involving√

1/(kσ̄0) in the derivatives normal to the 2-axis, and is much larger than that when
the plate is absent. The derivatives with one y2 derivative have leading terms involving√

1/(kσ̄0), and therefore are not as efficient as those derivatives involving
√

1/(kσ̄0)3

at low frequencies. Equation (2.12), however, does not involve enhanced terms, hence
quadrupoles aligned with the 2-axis (corresponding to ∂2G(x; y)/∂y2

2) are the least
efficient sound sources when close to the edge.

2.1.2. CFD flow field calculation
We have obtained the Green’s function for the scattering problem in the preceding

section. In order to solve (2.5) to determine the sound from the Lighthill quadrupoles,
we need to obtain the source terms shown on the right-hand side of (2.5). Unsteady
numerical simulations such as large eddy simulations (LES) are well suited for such
a purpose. However, performing an LES study is computationally expensive. The
usual time required even on a massively parallel computer can vary from a few days
to many weeks, depending on practical needs. To avoid this difficulty, attempts to
use time-averaged flow calculations to predict isolated jet noise have been made by
many authors. For example, Khavaran, Krejsa & Kim (1994), Bailly, Lafon & Candel
(1994) and Bailly, Candel & Lafon (1996) used time-averaged calculations with
turbulence statistics obtained from a k− ε turbulence model for predicting supersonic
jet noise. In the work of Béchara et al. (1995), a Reynolds-averaged Navier–Stokes
(RANS) calculation incorporating a k − ε model for turbulence to characterize the
sound sources was used to predict the noise of both simple and coaxial jets. Later,
Tam & Auriault (1999) further explored this approach and successfully predicted jet
noise at 90◦ to the jet by proposing an empirical sound source model analogous
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FIGURE 4. (Colour online) Velocity distributions in the radial direction using different
meshes consisting of 0.8 million, 0.2 million and 0.1 million cells, respectively.

to gas kinetic theory. Moreover, the three empirical constants in Tam’s work were
obtained by fitting to the far-field noise. In contrast, the work by Karabasov et al.
(2010) is based on Goldstein’s acoustic analogy theory (Goldstein 2003), and the
proportionality constants used in its source model are obtained from analysing LES
data, which therefore contains little empiricism apart from that of the k − ε model
for turbulence. The predicted noise at various observer angles to the jet are found to
agree well with experiments. In this study we adopt the same approach in order to
yield fast predictions. Therefore, in this section we perform a RANS study with the
standard k− ε turbulence model, and the source terms are subsequently modelled by
making use of the time-averaged flow variables from the RANS, as will be described
in detail in the next section.

The commercial software ANSYS Fluent 16.0 is used to perform a RANS
calculation of an isolated round jet with the same temperature as the ambient air.
When the wing and flap are sufficiently away from the jet, it can be expected that
little change of the flow field occurs. Thus, as a starting point we first calculate the
flow field for an axisymmetric jet. The computational domain is 30D and 5D in the
streamwise and radial directions, respectively, where D is the jet nozzle diameter.
Calculations using much larger computational domains have shown little difference
from those using the domain described above. The current domain size is therefore
used to yield both a fast convergence and sufficiently accurate results.

The mesh used in the calculation is generated using ANSYS Meshing 16.0. A
structured quadrilateral mesh is used for the entire domain, and the mesh is much
denser near the mixing layer and close to the jet. Near the mixing layer, the grid
size is approximately 0.025D in the axial direction and 0.02D in the radial direction.
The grid size inside the nozzle (r< 0.5D) in the radial direction is nearly uniformly
0.025D. Near the downstream boundary the grid size is approximately 0.2D. The
mesh consists of approximately 0.1 million cells. To check the mesh independence,
calculations using meshes consisting of 0.2 million and 0.8 million cells were carried
out and the results yielded little difference, as shown in figure 4. It is shown that
this number of cells (0.1 million) is sufficient to generate rapidly converging and
sufficiently accurate results. A wall-function approach is used to resolve the boundary
layer inside the nozzle. The chosen ‘standard wall function’ in ANSYS Fluent is
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FIGURE 5. (Colour online) Comparison of the jet mean and root-mean-square axial
fluctuation velocities along the centreline and lip line between the RANS and experimental
data. Isotropic turbulence is assumed for the RANS to obtain the root-mean-square axial
fluctuation velocity from turbulence intensity k.

based on the work of Launder and Spalding (Launder & Spalding 1974; ANSYS
2015). The boundary layer mesh starts at approximately y+ = 50, where y+ is the
dimensionless distance of the first mesh layer to the wall based on the wall friction
velocity (White 2005). The wall friction velocity u∗ is estimated using the log-law of
the boundary layer (White 2005). The boundary layer is resolved by approximately
15 layers, which should be sufficient according to the Fluent Theory Guide (ANSYS
2015). Calculations using more layers show little difference for the mean and turbulent
flow quantities.

The boundary conditions for boundaries both upstream and downstream are
‘pressure outlets’ provided in ANSYS Fluent (ANSYS 2015). At the nozzle inlet
boundary ‘pressure inlet’ is used (ANSYS 2015), which specifies both the stagnation
pressure and the stagnation temperature. The stagnation pressure and stagnation
temperature are given on the inlet boundary such that a Mach number M0 = 0.5 jet
is obtained, where M0 = Uj/c0, with Uj being the mean jet exit velocity. The static
temperature at the inlet boundary is the same as that of the ambient air, which is
set to be 300 K. The turbulence intensity at the ‘pressure inlet’ is set to be 5 %,
and studies using other values have shown little change in the calculated flow field,
especially after the potential core.

The standard k − ε model for the turbulence is used, as it gives a more realistic
core length (see figure 5 for example) compared to other turbulent models such as the
realizable k− ε model provided in ANSYS Fluent (ANSYS 2015). In fact, although
the potential core length varies, the difference that changing turbulent models causes
on the turbulent flow quantities is not significant, especially for the locations (x> 4D)
where the sound generation is most efficient. Moreover, since the far-field sound
depends on an integration over the whole turbulent flow field, little difference can
be expected. As shown by Mohan et al. (2015), the use of many different turbulent
models, such as k − ε, k − ω etc., makes little difference to the far-field sound
spectrum over the entire frequency range. Therefore we think that the use of the
k− ε model is sufficient for the current purpose. The compressible RANS equations
are solved, and the ideal-gas law for air is adopted while the ambient pressure is
set to be 1 atm. A model for the fourth-order space–time correlation function, as
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described in detail in the next section, can then be obtained from the flow variables
ρ̄, ū, k and ε, which denote the mean density, mean velocities, turbulence intensity
and turbulence dissipation rate, respectively.

To validate the RANS simulation, the streamwise components of the mean and
fluctuation velocities (root-mean-square value), both along the lip line and centreline
of jet, are compared with the experimental data published by Bridges (Bridges &
Wernet 2010), as shown in figure 5. The details of Bridges’ experiment will be
discussed in § 2.2.1. From figure 5(a), it can be seen that the mean velocity profiles,
in particular that on the lip line, agree well with experiment. On the centreline, the
core length matches well with experimental data, though it appears that the velocity
is slightly under-predicted further downstream. Given that the Reynolds number for
Bridge’s experiment is twice that for the RANS simulation (as D are 1 in and 2 in
for the RANS and Bridge’s experiment, respectively) and the temperature ratio in
the experiment is slightly different from that in the simulation, such agreement is
good and the effect of any difference on the sound propagation can be expected to
be negligible. Figure 5(b) shows the turbulent fluctuation velocity profiles on the
jet lip line and centreline. The root-mean-square value of u′1, where u′1 is the axial
fluctuation velocity, is available in the experiment, but not from the RANS simulation.
To facilitate comparison, we estimate this value from the turbulence intensity k by
assuming that the turbulence is isotropic. This assumption, however, is known not
to be correct (Karabasov et al. 2010; Mohan et al. 2015); therefore, we expect a
slight under-prediction of the axial turbulent fluctuation velocities, which can be seen
from figure 5(b). Apart from these uncertainties, it can be seen that an overall good
agreement is achieved for data on the lip line. The results on the centreline also
agree well after approximately x/D= 6. The over-prediction in the first few diameters
is expected. This is because the inlet turbulence intensity is given a high-than-normal
value of 5 %, so that the centreline turbulence profiles near the downstream edge
of the potential core can better agree with the experiment. However, as mentioned
earlier, changing the inlet turbulence intensity has no effect on the flow field after
the potential core.

As will be mentioned in the rest of this paper, an LES study is also performed
with the same operating conditions as those in Bridges’ experiment. Details of
the LES can be found in § 2.2.1. It is therefore useful to compare the results of
our RANS simulation to those obtained in the LES. Because we are now able to
calculate the turbulence intensity directly from LES, we do not need to compare the
root-mean-square of the axial fluctuation velocity by assuming isotropic turbulence
for the RANS results. The results are shown in figure 6. It can be seen that a
similar good agreement with that shown in figure 5(a) for the mean axial velocities
is achieved. However, comparing figure 6(b) to figure 5(b), one sees a much better
agreement for the turbulence intensity distribution, especially for the axial positions
after the potential core. This shows that the cause of the under-prediction shown in
figure 5(b) is indeed due to the assumption of isotropic turbulence (Karabasov et al.
2010; Mohan et al. 2015), and the RANS simulation is capable of predicting the jet
flow accurately.

2.1.3. Far-field sound due to Lighthill’s quadrupoles
Combining the acoustic Green’s function, the model of the fourth-order space–time

correlation function from Karabasov et al. (2010) and the mean-flow data from the
RANS solution, we are now in a position to formulate the far-field sound power
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FIGURE 6. (Colour online) Comparison of the jet mean and turbulence intensity along the
centreline and lip line between the RANS and LES results.

spectra. It is well established that the far-field sound perturbation can be written as

ρ ′(x, ω)=
∫

V
T̂ij(y, ω)

∂2G(x; y, ω)
∂yi∂yj

d3y. (2.19)

The integral in (2.19) is over the entire volume where T̂ij(y, ω) is not second-order
small. By making use of the linearized relationship p′(x, ω) = c2

0ρ
′(x, ω) and

ΦQ(x, ω) = limT→∞ (π/T)p′(x, ω)p′∗(x, ω), where ΦQ(x, ω) represents the power
spectral density (PSD) of far-field sound and ∗ denotes taking the complex conjugate,
it can be shown that

ΦQ(x, ω)= c4
0

∫
Vy

∫
V1y

Rijkl(y, 1y, ω)Iijkl(x, y, 1y, ω) d31y d3y, (2.20)

where

Rijkl(y, 1y, ω)= 1
2π

∫ ∞
−∞

Tij(y, t)Tkl(y+1y, t+ τ) e−iωτ dτ ,

Iijkl(x, y, 1y, ω)= ∂
2G(x; y, ω)
∂yi∂yj

∂2G∗(x; y+1y, ω)
∂yk∂yl

.

 (2.21)

It is known that the fourth-order space–time correlation function Rijkl(y, 1y, τ ) can
be well represented by a Gaussian function as (Karabasov et al. 2010)

Rijkl(y, 1y, τ ) = Aijkl(y) exp
[
− |1y1|

ū1(y)τs(y)

− ln 2

((
1y1 − ū1(y)τ

l1(y)

)2

+
(
1y2

l2(y)

)2

+
(
1y3

l3(y)

)2
)]
, (2.22)

where Aijkl(y) = Cijkl(2ρ̄k)2, li = cik3/2/ε and τs = cτk/ε. The constants Cijkl, ci and
cτ can be obtained by best fitting (2.22) to the space–time correlation data obtained
from LES simulations. By analysing the LES data, we found that c1, c2, c3, cτ are
approximately 0.4, 0.23, 0.23, 0.3, respectively, which are close to those obtained by
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Karabasov et al. (2010), but also account for the anisotropy of the turbulence length
scales (see Mohan et al. 2015). Cijkl remain the same as those found by Karabasov
et al. (2010). The fourth-order space–time correlation of the nonlinear source term
is known to be well modelled by (2.22) (see more details from Goldstein (2003)
and Karabasov et al. (2010)). Using (2.22), the cross-spectra is thus obtained by
performing the standard Fourier transformation, which yields

Rijkl(y, 1y, ω) = l1(y)
2ū1(y)

√
π ln 2

Aijkl(y) exp
[
− l1(y)2ω2

4ū2
1(y) ln 2

]
exp

[
− |1y1|

ū1(y)τs(y)
− i

ω

ū1(y)
1y1 − ln 2

((
1y2

l2(y)

)2

+
(
1y3

l3(y)

)2
)]
.

(2.23)

The tensor Iijkl(x, y, 1y, ω) in (2.21) depends solely on the Green’s function.
Consequently, substituting the free-space Green’s function or the one developed in
the first part of this section into (2.20) yields results for an isolated jet or installed
jet, respectively.

2.2. Near-field scattering
Outside the jet mixing layer, there is a region of near-field pressure fluctuations, which
is primarily induced by hydrodynamic instability waves and decays exponentially in
the radial direction (Jordan & Colonius 2013). In the frequency regime St > 0.1,
the waves convect at a virtually constant speed Uc ≈ 0.6 ∼ 0.8Uj, where St is the
Strouhal number based on the jet diameter (Arndt, Long & Glauser 1997; Tinney &
Jordan 2008; Gudmundsson & Colonius 2011; Jordan & Colonius 2013). Since the
convection velocity is lower than the speed of sound, the pressure due to the field
of a hydrodynamic wave decays exponentially in the radial direction (see the details
in the following section) and therefore only contributes weakly to the far-field of an
isolated jet. When acoustic analogy theories are adopted for the isolated jet, these
evanescent waves are not regarded as quadrupole sources, since their magnitude of
fluctuation is small enough to be regarded as linear (pseudosound, thus their source
strength would be second-order small). However, when a surface with sharp edges is
present in the near-field of the jet, the previously non-radiating pressure field can be
efficiently scattered into sound by the edge. Thus, this suggests that the Lighthill’s
quadrupole sources are not sufficient to correctly predict the far-field of the installed
jet, and the sound scattered by the sharp edges of the aerofoil must be accounted
for. In this section, the far-field sound due to the interaction between the near-field
evanescent waves and the plate edge is modelled using Amiet’s approach.

It is worth noting that the trailing-edge scattering mechanism of the hydrodynamic
field has been suggested in several earlier works – for example, those of Lawrence,
Azarpeyvand & Self (2011) and Bychkov & Faranosov (2014). However, the use
of the term ‘hydrodynamic field’ is not always same as the evanescent wave
mentioned here, for both nonlinear and linear regions of hydrodynamic field exist.
The evanescent wave mentioned here accounts for only the exponentially decaying
linear part (excluding both the nonlinear and linear acoustic parts), the mechanisms of
which cannot be captured by Lighthill’s acoustic analogy. It should also be noted that
the most heavily researched and cited convection velocity, which is approximately
0.6 ∼ 0.8Uj, is primarily for the instability waves at frequencies around St = 0.3.
But whether this convection speed is still constant at very low frequencies is not yet
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FIGURE 7. Schematic of the jet with a static ambient flow. r, θ and x denote the radial,
azimuthal and streamwise coordinates, respectively. Immediately outside the jet plume
where the flow velocity virtually vanishes, the linearized Navier–Stokes equation resulted
in the classical wave equation. Due to the spreading of the jet flow, only the pressure
fluctuation in the narrow strip might be regarded as a stationary function of x.

known.
In fact the constant-convection-velocity assumption has been called into question
by several authors (Kerhervé, Fitzpatick & Jordan 2006). By analysing LES data we
confirmed the frequency dependence of the convection velocity and found that this
convection velocity Uc is significantly lower than 0.6Uj at low frequencies, e.g. for
St< 0.1. This frequency dependence is included in our model.

2.2.1. The near-field evanescent waves
As the near-field evanescent waves are scattered into sound nearby the trailing edge,

it is useful to investigate its properties before we move on to model the scattering
mechanism, in particular its spatial correlation. To illustrate the idea, we consider here
an isolated jet with static ambient flow, as shown in figure 7. Note that we work with
an isolated jet in this section, thus it is sensible to temporarily switch to a cylindrical
coordinate system with its origin located at the centre of the nozzle exit, as shown in
figure 7. The axial and radial coordinates are denoted by x and r respectively. At any
axial position x, the mean jet velocity decays quickly (outside the potential core) as
r increases. Therefore, the velocity effectively vanishes when the radial distance from
the jet centreline is larger than a value r0. Due to the spreading effect of the jet and
the self-similarity exhibited by the velocity distribution along the radial lines, r0 would
increase as x increases. Consequently, the pressure fluctuation when r> r0, as shown
by the domain Ω0 in figure 7, is governed by the classical wave equation resulting
from the linearization of the perturbed Navier–Stokes equations, which is standard and
not repeated here.

The solution of the reduced wave equation for frequency ω in Ω0 is also standard.
If we are only interested the radially decaying components (excluding the oscillating
acoustic components), the solution must be of the form

p′(ω, x)=
∞∑

m=−∞

∫ ∞
−∞

p̂(ω,m, kx)Km

(√
k2

x − k2r
)

eimθ e−ikxx dkx, (2.24)

where θ is the azimuthal angle, Km(r) is the mth modified Bessel function of the
second kind, and we have made the use of the fact that the exponentially growing
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solution Im(r) tending to infinity as r→∞ must be excluded. As we have excluded
the solutions corresponding to acoustic fluctuations, the integral interval of kx should
strictly be from −∞ to −k and from k to ∞. However, since this does not affect our
following derivation, we will use the interval from −∞ to ∞ for simplicity.

Since the flow field is turbulent in time t, p̂(ω, m, kx) would be a statistical
quantity with respect to ω. In addition, the turbulence flow also results in randomness
of the boundary condition of the domain Ω0, so it can be expected that p̂(ω, m, kx)
would be a statistical quantity with respect to m and kx as well. Therefore, the cross
power spectral density of two points located at the same x and θ , but at r1 and r2,
respectively, would be

R(ω; r1, r2) ≡ lim
T→∞

π

T
p̂(ω, r1)p̂∗(ω, r2)

= lim
T→∞

π

T

∞∑
m=−∞

∞∑
n=−∞

∫ ∞
−∞

∫ ∞
−∞

p̂(ω,m, kx)p̂∗(ω, n, k′x)

×Km

(√
k2

x − k2r1

)
Kn

(√
k′2x − k2r2

)
ei(m−n)θ e−i(kx−k′x)x dkx dk′x,

(2.25)

where R(ω; r1, r2) denotes the cross power spectral density of the aforementioned
two points and 2T is the time interval for performing the temporal Fourier transform
p(ω, x). The overbar and star denote the ensemble average and complex conjugate,
respectively.

Let us assume that p′(ω, x) is a statistically stationary function of x and θ (Tinney
& Jordan 2008), which implies

lim
T→∞

π

T
p̂(ω,m, kx)p̂∗(ω, n, k′x)= P(ω,m, kx)δ(kx − k′x)δnm, (2.26)

where δ(x) and δmn are the conventional generalized δ function and Kronecker delta,
respectively. Substituting (2.26) into (2.25) yields

R(ω; r1, r2)=
∞∑

m=−∞

∫ ∞
−∞

P(ω,m, kx)Km

(√
k2

x − k2r1

)
Km

(√
k2

x − k2r2

)
dkx. (2.27)

If we define the spectral correlation coefficient as

η(ω; r1, r2)≡
∣∣∣p̂(ω, r1)p̂∗(ω, r2)

∣∣∣√∣∣p̂(ω, r1)
∣∣2 ∣∣p̂(ω, r2)

∣∣2 , (2.28)

it follows from (2.25) and (2.27) that

η(ω; r1, r2)= |R(ω; r1, r2)|√
R(ω; r1, r1)R(ω; r2, r2)

=

∣∣∣∣∣
∞∑

m=−∞

∫ ∞
−∞

P(ω,m, kx)Km(γ r1)Km(γ r2) dkx

∣∣∣∣∣√√√√ ∞∑
m=−∞

∫ ∞
−∞

P(ω,m, kx)[Km(γ r1)]2 dkx

∞∑
m=−∞

∫ ∞
−∞

P(ω,m, kx)[Km(γ r2)]2 dkx

,

(2.29)
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where γ ≡√k2
x − k2 denotes the radial decay of the evanescent waves. Although using

the Cauchy–Schwartz inequality equation it can be readily shown that η(ω, r1, r2)6 1,
it is obvious that the summation over the circumferential mode m makes it hard to
reach any useful conclusion about how much correlation there exists between the two
points. Therefore, we try to remove the summation through a modal decomposition in
the θ direction of the near-field pressure on two coaxial circles at the same x.

The mathematical derivation is similar, except that we write

p′(ω,m, r, x)=
∫ ∞
−∞

p̂(ω,m, kx)Km

(√
k2

x − k2r
)

e−ikxx dkx. (2.30)

Repeating the above steps yields

R(ω,m; r1, r2)=
∫ ∞
−∞

P(ω,m, kx)Km

(√
k2

x − k2r1

)
Km

(√
k2

x − k2r2

)
dkx. (2.31)

If we define the modal spectral correlation coefficient as

η(ω,m; r1, r2)≡
∣∣∣p̂(ω,m, r1)p̂∗(ω,m, r2)

∣∣∣√∣∣p̂(ω,m, r1)
∣∣2 ∣∣p̂(ω,m, r2)

∣∣2 , (2.32)

it follows that

η(ω,m; r1, r2)= |R(ω,m; r1, r2)|√
R(ω,m; r1, r1)R(ω,m; r2, r2)

=

∣∣∣∣∫ ∞−∞ P(ω,m, kx)Km

(√
k2

x − k2r1

)
Km

(√
k2

x − k2r2

)
dkx

∣∣∣∣√∫ ∞
−∞

P(ω,m, kx)

[
Km

(√
k2

x − k2r1

)]2

dkx

∫ ∞
−∞

P(ω,m, kx)

[
Km

(√
k2

x − k2r2

)]2

dkx

.

(2.33)

It is clear that for a fixed frequency ω and circumferential mode number m the
coefficient would depend on the specific form of function P(ω,m, kx). If, for example,
the local convective speed of the evanescent wave is a roughly constant value,
Uc(ω, m), which would mean P(ω, m, kx) obtains a large value around k̄x = ω/Uc
(note k̄x is a function of both ω and m), then it follows that the approximation

P(ω,m, kx)= P(ω,m)δ(kx − k̄x) (2.34)

holds. Equation (2.33) can thus simplify to

η(ω,m; r1, r2)=

∣∣∣∣P(ω,m)Km

(√
k̄2

x − k2r1

)
Km

(√
k̄2

x − k2r2

)∣∣∣∣√
P(ω,m)

[
Km

(√
k̄2

x − k2r1

)]2

P(ω,m)
[

Km

(√
k̄2

x − k2r2

)]2
= 1.

(2.35)
In another words, if the convective velocity of the evanescent waves were indeed
dominated by a fixed value for each m and ω, then we would obtain a perfect
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correlation between the modal spectra of the pressure on two coaxial circles at the
same x. Therefore the value of η(ω,m; r1, r2) can be used to determine whether there
exists such a dominant convection velocity for each mode number m and frequency ω.

However, it should be noted that in order to reach this conclusion, we made use
of the assumption that p′(ω, x) is a statistically stationary function of x. However,
we know that the near-field instability waves also grow and decay slowly. To avoid
this difficulty we only need to consider the pressure inside a sufficiently narrow strip
shown in figure 7. As the growth and decay occur slowly, we expect the locally
stationary assumption to be a good approximation within this strip. All the preceding
derivation and conclusion remain unchanged, except quantities are interpreted in a
local sense and will depend on x. For example k̄x is now also a function of x, which
implies that the convection velocity can also vary as x changes.

To examine to what extent the dominant-convection-velocity assumption serves as
a good approximation, we carried out a hybrid RANS–implicit LES study for an
isolated single stream jet from the Bridges’ experimental data (set point 3) (Bridges
& Wernet 2010). The jet diameter D = 5.08 cm, jet Mach number M0 = 0.5, jet
temperature ratio Tj/T∞= 0.95 and the nozzle pressure ratio (ratio of plenum pressure
to atmospheric pressure) NPR = 1.197. The jet Reynolds number is 5.8 × 105. The
LES solver discretized Favre-averaged compressible Navier–Stokes equations with
an unstructured non-orthogonal, second-order finite volume scheme. The fluxes are
approximated with the Roe method, where the central part is given by a kinetic
energy preserving scheme (Jameson 2008) with a fourth-order dissipative term. In the
active LES flow region of interest, the dissipation is kept to a minimum value, which
gives stable solution. Outside the LES region, dissipation is increased for the sponge
region to suppress the reflecting waves from the boundaries. Implicit LES relies on
this numerical dissipation to remove subgrid scales without any subgrid model. A
dual-time step method is used to advance the solution implicitly in time. The turbulent
flow is developed in a pipe of length 4D before exiting the nozzle. A RANS layer,
with Spalart–Allmaras turbulence model, is applied in the near-wall region of the pipe,
which helped to reduce the grid resolution requirements. The computational domain
is stretched in the streamwise (−20D ∼ 100D) and radial (60D) directions, with, as
mentioned above, sponge zones at the boundaries. A structured axisymmetric mesh
of 24 million cells is used. The mesh being used can yield a satisfactory frequency
resolution up to St = 2. The details of numerical methodology and grid independent
studies have been discussed for various single stream jets by Naqavi et al. (2016),
and the current grid distribution is the same as the validation case. To validate the
LES simulation, we compared the calculated solution with Bridges experimental data
(Bridges & Wernet 2010). Both the mean flow and the turbulent fluctuation velocity
profiles along the jet centreline and lip line are compared. The results are shown
in figure 8(a,b). It can be seen that excellent agreement between the experimental
and LES data is achieved for x/D > 2. The disagreement for x/D < 2 is expected
because the flow velocity is very sensitive to the inlet boundary conditions, and the
inlet boundary conditions in experiments are very difficult to replicate.

Figure 9 shows the modal spectral correlation coefficient between pressure
fluctuations on a pair of coaxial circles at different radial positions using the LES data.
The axial position is x/D = 6 and the correlation coefficient is defined between the
circle at r = 1.8D and other circles at r = 1.9D, 2.0D, 2.1D, 2.5D, 3.0D, respectively.
Only modes m= 0 and m=±1 are shown, as the energy contained in mode m reduces
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FIGURE 8. (Colour online) Comparison of the jet mean and turbulent fluctuation velocity
along centreline and lip line between the LES and experimental data.
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FIGURE 9. (Colour online) The modal spectral correlation coefficient η between the point
at r= 1.8D and other points at different radial positions, all the points are at x= 6D.

quickly as m increases. This has been observed in several experimental studies – for
example, the experimental work of Tinney, Glauser & Ukeiley (2008a) and Tinney
& Jordan (2008). From figure 9 it appears that the coefficient is close to 1 at low
frequencies for either mode 0 or (±)1. This implies that the assumption of a dominant
convection velocity is valid. The strong oscillation at high frequencies St> 0.2 might
well be due to acoustic contamination, particularly at large radial positions. However,
as can be seen in the rest of this paper, the near-field pressure is only significant
for frequencies satisfying St < 0.2. Therefore, it is reasonable to assign a fixed Uc

for each m and ω for the near-field evanescent waves in the scattering model to be
developed in the next subsection.

To determine these convection velocities, we consider the modal PSD of the near-
field pressure fluctuation along the circle located at the axial position x and radial
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FIGURE 10. (Colour online) The reduced power spectra of the near-field pressure
fluctuation for points at x= 6D and different radial positions.

position r. Consider the correlation-based spectrum defined by

Π(ω,m; r)= lim
T→∞

π

T

∣∣∣∣∣∣ p̂(ω,m, rref )p̂∗(ω,m, r)√
|p̂(ω,m, rref )|2

∣∣∣∣∣∣
2

, (2.36)

where rref denotes the r at a fixed reference point. Then using (2.34), we have

Π(ω,m; r)= P(ω,m)K2
m

(√
k̄2

x − k2r
)
. (2.37)

Hence the reduced power spectrum

Π(ω,m; r)= Π(ω,m; r)
K2

m

(√
k̄2

x − k2r
) = P(ω,m) (2.38)

would be independent of r and the reduced power spectra for any r should collapse.
Uc can be evaluated from the collapsed radial decay rate γ .

Figure 10 shows the reduced power spectra for different r. An excellent data
collapse is achieved for both mode 0 and mode (±)1. This is another strong piece
of evidence that there does indeed exist a dominant local convection velocity for
the near-field evanescent waves for each m and ω. The convection velocities for
mode 0, (±)1 and (±)2 obtained in this way are shown in figure 11. As shown
in figures 9 and 10, both the high spatial correlation and successful collapse of the
reduced spectra are only valid for frequencies St < 0.2. Therefore, the convection
velocities are only shown in this low-frequency regime. It can be seen that the
convection velocity is much lower than 0.6Uj, which is heavily studied for instability
waves at approximately St= 0.3. It is interesting to note that the frequency-dependent
convection velocity curve obtained here is consistent with the finding of Kerhervé
et al. (2006). From figure 11 we can find that the convection velocities for different
azimuthal modes m do not differ significantly from each other, especially for modes
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FIGURE 11. (Colour online) The convection velocities at different frequencies for different
mode m obtained by collapsing spectra at different radial positions but at the same
x/D= 6. Due to the dominant presence of acoustic waves at high frequencies, only the
low-frequency regime is shown.

0, (±)1 and (±)2. This is consistent to the findings of Tinney, Ukeiley & Glauser
(2008b) obtained using the proper orthogonal decomposition (POD) technique by
analysing the pressure–velocity coupling. This fact is used in the following sections
to simplify the scattering model.

The reason for the loss in spatial correlation for the near-field pressure, and hence
the failure of collapsing modal PSD, for St > 0.2, is mostly due to the fact that the
acoustic fluctuation is dominant in this frequency regime. To show this, we take the
temporal and spatial Fourier transformations of the pressure along the straight line
r= 3D, θ = 0 and show the results in figure 12. From figure 12(a) it can be clearly
seen that the wavenumber spectrum of the near-field pressure at high frequencies falls
entirely inside the acoustic cone. This means that the pressure is effectively acoustic
fluctuations rather than due to evanescent waves. Note that from figure 12(a) we have
further confirmed that the convection velocity is a frequency-dependent quantity rather
than a fixed constant between 0.6Uj and 0.8Uj. To better demonstrate this, the central
region of figure 12(a) is expanded in figure 12(b). It is clear that at low frequencies
the convection velocity is significantly less than 0.6Uj (the convection peaks on the
right-hand side are below the line of Uc = 0.6Uj). It is worth noting that, due to the
size limitation of the computational domain, the highest spatial resolution we achieved
is kxD/(2π)≈ 0.07. Therefore, at very low frequencies, e.g. St< 0.03, the convective
peaks cannot be resolved. Also worth noting is that the convection peaks we show in
this figure correspond to an overall convection velocity for the axial range x = 0 to
14D; therefore, it is somewhat different from the local convection velocities obtained
in figure 11.

2.2.2. Near-field pressure scattering
Using the conclusions we made about the near-field pressure in the preceding

section, we develop a closed-form scattering model in this section. For a realistic
wing–flap system, both the trailing edge and side edges of the wing and flap are
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FIGURE 12. (Colour online) The wavenumber spectrum of the near-field pressure along
the line r= 3D, θ = 0: (a) full range; (b) zoomed-in central region. The green solid and
blue dashed line correspond the convection velocities Uc = c0 and Uc =−c0 respectively;
the dash-dotted magenta line corresponds to the convection velocity Uc = 0.6Uj.

present. We again adopt the same simplification used in developing the acoustic
Green’s function: the wing and flap system are assumed to a semi-infinite flat plate
with only a trailing edge. Due to the presence of the flat plate, we switch back to
the Cartesian coordinates defined in figure 2 again. When the flat plate is sufficiently
far away from the jet axis – for example, the perpendicular distance between the
plate and the jet axis is greater than 2D – little change of the flow occurs due to
the presence of the plate, and therefore the near-field evanescent waves, originating
from hydrodynamic instability waves, can be found to be virtually same as that for
an isolated jet (Bychkov & Faranosov 2014). We can thus use the evanescent wave
field for an isolated jet as the incident evanescent field for an installed jet. Assume
the near-field pressure fluctuation is dominated by the evanescent wave of the first
few modes, i.e. the pressure field can be written as

p′(ω, x)=
N∑

m=−N

p̂(ω,m)Km(γ r) e−ik1x1 eimθ , (2.39)

where p̂(ω, m) denotes the magnitude of the pressure fluctuations of mode m and
frequency ω, Km the mth order modified Bessel function of the second kind and the
radius r here is now defined as

√
x2

2 + (x3 +H)2, where H is the distance between the
jet centreline to the flat plate. γ , as defined earlier, denotes the decay rate

√
k2

1 − k2,
where k1=ω/Uc. The convection velocity Uc (hence k1) is a function of ω and m. θ
is the azimuthal angle and N is a small integer; for example, according to the LES
data, we find N = 1 is sufficient.

However, (2.39) is the solution of the reduced wave equation with a static ambient
flow. In the presence of an uniform ambient flow of speed U in the x1 direction, (2.39)
changes to

p′(ω, x)=
N∑

m=−N

p̂(ω,m)Km(γcr) e−ik1x1 eimθ , (2.40)
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where the convective radial decay rate

γc =
√
(k1β2 + kM)2 − k2

β
. (2.41)

When the flat plate is directly above the jet, the hypothetical incident pressure that
would exist on the lower surface of the plate if the plate were absent is

ph(ω, x1, x2)=
N∑

m=−N

p̂(ω,m)Km

(
γc

√
x2

2 +H2

)
e−ik1x1

×
([|m|/2]∑

k=0

C2k
|m|(−1)k

H|m|−2kx2k
2√

x2
2 +H2

|m| + i sgn(m)
[|m|−1/2]∑

k=0

C2k+1
|m| (−1)k

H|m|−2k−1x2k+1
2√

x2
2 +H2

|m|

)
,

(2.42)

where [x] means taking the nearest integer that is not larger than x, and Cn
m is the

binomial coefficient, which results from the use of de Moivre’s theorem. By making
use of Fourier transformation, the hypothetical incident pressure can be expressed as
a superposition of a series of plane waves, namely

ph(ω, x1, x2)=
N∑

m=−N

∫ ∞
−∞

p̃(ω, k2,m) e−i(k1x1+k2x2) dk2, (2.43)

where

p̃(ω, k2,m)= 1
2π

∫ ∞
−∞

p̂(ω,m)Km

(
γc

√
x2

2 +H2

)
eik2x2

×
([|m|/2]∑

k=0

C2k
|m|(−1)k

H|m|−2kx2k
2√

x2
2 +H2

|m| + i sgn(m)
[|m|−1/2]∑

k=0

C2k+1
|m| (−1)k

H|m|−2k−1x2k+1
2√

x2
2 +H2

|m|

)
dx2.

(2.44)

Note that the real part of (2.42) is an even function of x2 while the imaginary part is
an odd function. Making use of this property and properties of Fourier transformation
one can find that the p̂(ω, k2,m) can be evaluated analytically (Gradshteyn & Ryzhik
2007):

p̃(ω, k2,m)= 1√
2π

p̂(ω,m)

×
{[|m|/2]∑

k=0

C2k
|m|H

−2k+1/2γ −|m|c
d2k

dk2k
2

[
(γ 2

c + k2
2)

1/2|m|−1/4K|m|−1/2

(
H
√
γ 2

c + k2
2

)]
− sgn(m)

×
[|m|−1/2]∑

k=0

C2k+1
|m| H−2k+1/2γ −|m|c

d2k

dk2k
2

[
k2(γ

2
c + k2

2)
1/2|m|−3/4K|m|−3/2

(
H
√
γ 2

c + k2
2

)]}
.

(2.45)

For an incident pressure given by p̃(ω, k2,m) e−i(k1x1+k2x2), the scattered pressure on
the lower surface of the flat plate can be found using the Schwarzschild technique as
(Amiet 1976a; Lyu, Azarpeyvand & Sinayoko 2016)

ps = p̃(ω, k2,m) e−i(k1x1+k2x2) ((1+ i)E0(−µx1)− 1), (2.46)
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where

µ= k1 +
√

k2 − k2
2β

2/β2 + kM/β2, E0(x)=
∫ x

0

e−it

√
2πt

dt. (2.47a,b)

When the observer is located at x, routine application of the theory of Kirchhoff and
Curle yields the far-field sound pressure (Amiet 1975; Lyu, Azarpeyvand & Sinayoko
2015; Lyu et al. 2016)

pf (ω, x) = (1+ i)
ωx3

πc0S2
0

eik(Mx1−S0)/β
2

×
N∑

m=−N

∫ ∞
−∞

sin
[(

k2 − k
x2

S0

)
d/2
]

k2 − x2

S0

1
µA
Γ (c, µ, µA)p̃(ω, k2,m) dk2,

(2.48)

where c and d are the chord and span of the finite plate respectively. Note when
calculating (2.46) we assumed that the flat plate is semi-infinite. But when applying
the theory of Kirchhoff and Curle to obtain (2.48) we used a finite plate of chord c
and span d. The same approach was used by Amiet (1976b), and was found to be a
good approximation provided the frequency is not too low (Roger & Moreau 2005).
The properly bounded function Γ in (2.48) is defined as

Γ (x, µ, µA)= eiµAxE0(µx)−
√

µ

µ−µA
E0 [(µ−µA)x]+ 1

1+ i
(1− eiµAx), (2.49)

and
S0 =

√
x2

1 + β2(x2
2 + x2

3),

µA = k1 + k
β2

(
M − x1

S0

)
.

 (2.50)

We note that normally aircraft wings have a large span-to-chord ratio, and d can
be quite large compared to the sound wavelength at the frequency of peak noise
enhancement in the low-frequency regime, therefore we use

lim
d→∞

sin
[(

k2 − k
x2

S0

)
d/2
]

π

(
k2 − k

x2

S0

) = δ
(

k2 − k
x2

S0

)
(2.51)

to simplify (2.48) to

pf (ω, x)= (1+ i)
ωx3

c0S2
0

N∑
m=−N

1
µA
Γ
(
c, µ|k2=k(x2/S0), µA

)
p̃
(
ω, k

x2

S0
,m
)
. (2.52)

The far-field sound power density spectrum can thus be obtained from ΦN(ω, x) =
limT→∞(π/T)pf (ω, x)p∗f (ω, x), i.e.:

ΦN(ω, x) = 2
[
ωx3

c0S2
0

]2 N∑
m=−N

N∑
m′=−N

Γ (c, µ|k2=k(x2/S0), µA)

µA

∣∣∣∣
m

Γ ∗(c, µ|k2=k(x2/S0), µA)

µ∗A

∣∣∣∣
m′

× lim
T→∞

π

T
p̃
(
ω, k

x2

S0
,m
)

p̃∗
(
ω, k

x2

S0
,m′
)
. (2.53)
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It should be noted that (2.53) is due to the contribution of the scattered pressure only.
In order to take the incident wave contribution into consideration, the term 1 in the
last bracket on the right hand side of (2.49) defining the function Γ (x, µ, µA) should
be omitted (Amiet 1978).

Substituting (2.45) into the above equation, one finds the statistical term in (2.53)
can be evaluated to be

lim
T→∞

π

T
p̃
(
ω, k

x2

S0
,m
)

p̃∗
(
ω, k

x2

S0
,m′
)
= 1

2π
Π(ω,m)δmm′

×
{[|m|/2]∑

k=0

C2k
|m|H

−2k+1/2γ −|m|c
d2k

dk2k
2

[
(γ 2

c + k2
2)

1/2|m|−1/4K|m|−1/2

(
H
√
γ 2

c + k2
2

)]
− sgn(m)

×
[|m|−1/2]∑

k=0

C2k+1
|m| H−2k+1/2γ −|m|c

d2k

dk2k
2

[
k2(γ

2
c + k2

2)
1/2|m|−3/4K|m|−3/2

(
H
√
γ 2

c + k2
2

)]}2

k2=kx2/S0

,

(2.54)

where Π(ω,m) denotes the power spectrum of mth order near-field evanescent waves.
The spectrum could be obtained from simple models validated by experiments or LES
simulations. Substituting (2.54) into (2.53) yields

ΦN(ω, x)= 1
π

[
ωx3

c0S2
0

]2 N∑
m=−N

∣∣∣∣Γ (c, µ|k2=k(x2/S0), µA)

µA

∣∣∣∣2 Π(ω,m)

×
{[|m|/2]∑

k=0

C2k
|m|H

−2k+1/2γ −|m|c
d2k

dk2k
2

[
(γ 2

c + k2
2)

1/2|m|−1/4K|m|−1/2

(
H
√
γ 2

c + k2
2

)]
− sgn(m)

×
[|m|−1/2]∑

k=0

C2k+1
|m| H−2k+1/2γ −|m|c

d2k

dk2k
2

[
k2(γ

2
c + k2

2)
1/2|m|−3/4K|m|−3/2

(
H
√
γ 2

c + k2
2

)]}2

k2=kx2/S0

.

(2.55)

Equation (2.55) is the generic form of near-field scattering model. However, further
simplifications can be made in practical cases. First, if we assume that the fluctuation
is symmetric with respect to m, i.e. Π(ω, m) = Π(ω, −m), (2.55) can be further
simplified to

ΦN(ω, x)= 1
π

[
ωx3

c0S2
0

]2 N∑
m=0

∣∣∣∣Γ (c, µ|k2=k(x2/S0), µA)

µA

∣∣∣∣2 Πs(ω,m)

×

([|m|/2]∑

k=0

C2k
|m|H

−2k+1/2γ −|m|c
d2k

dk2k
2

[
(γ 2

c + k2
2)

1/2|m|−1/4K|m|−1/2

(
H
√
γ 2

c + k2
2

)])2

+
([|m|−1/2]∑

k=0

C2k+1
|m| H−2k+1/2γ −|m|c

d2k

dk2k
2

[
k2(γ

2
c + k2

2)
1/2|m|−3/4K|m|−3/2

(
H
√
γ 2

c + k2
2

)])2


k2=kx2/S0

,

(2.56)

where Πs(ω,m) is the mth single-sided modal power spectral density, i.e. Πs(ω,m)=
Π(ω,m)+Π(ω,−m) for m 6= 0. If we assume that only the 0 and 1(−1) modes are
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significant, we can show that the far-field sound spectral density in the midspan plane
(x2 = 0) is

ΦN(ω, x) ≈
[
ωx3

c0S2
0

]2
{∣∣∣∣Γ (c, µ, µA)

µA

∣∣∣∣2 Πs(ω, 0)
e−2Hγc

2γ 2
c

}
k2=0,m=0

+
{∣∣∣∣Γ (c, µ, µA)

µA

∣∣∣∣2 Πs(ω, 1)
e−2Hγc

2γ 2
c

}
k2=0,m=1

. (2.57)

Let Π0(ω, 0) and Π0(ω, 1) denote the zeroth and first single-sided modal power
spectral densities measured at the location of r = r0, then it follows that Πs(ω, 0)
K2

0(γcr0)=Π0(ω, 0) and Πs(ω, 1)K2
1(γcr0)=Π0(ω, 1). Note in (2.57), µ, µA and γc

depend on the mode number m, as the convection velocity (hence k1) can vary with
m. However, in § 2.2.1 we show that the convection velocities for mode 0 and (±)1
do not differ significantly from each other, therefore (2.57) can be further simplified
by assuming an averaged convection velocity profile Uc(ω) over the two modes, such
that

ΦN(ω, x)≈
[
ωx3

c0S2
0

]2
{∣∣∣∣Γ (c, µ, µA)

µA

∣∣∣∣2 e−2Hγc

2γ 2
c

(
Π0(ω, 0)
K2

0(γcr0)
+ Π0(ω, 1)

K2
1(γcr0)

)}
k2=0,Uc=Uc(ω)

.

(2.58)

When in the frequency range of interest where K0(γcr0) and K1(γcr0) do not differ
from each other significantly (such as the case to be presented in the § 3), (2.58) can
be estimated by

ΦN(ω, x)≈
[
ωx3

c0S2
0

]2
{∣∣∣∣Γ (c, µ, µA)

µA

∣∣∣∣2 e−2Hγc

2γ 2
c

Π0(ω)

K2
0(γcr0)

}
k2=0,Uc=Uc(ω)

, (2.59)

where Π0(ω) is the single-sided spectrum of the incident near-field evanescent waves
at r = r0, which can be easily measured using one microphone in an isolated-jet
experiment. To ensure acoustic fluctuations to be negligible, one can choose r0 to be
small such that the microphone is sufficiently close to the jet. Since this spectrum
varies with axial position, it makes more sense to put the microphone at the position
where the trailing edge of the flat plate would be if a flat plate were to be present,
i.e. the place where the incident wave is to be scattered.

We have now obtained the far-field sound due to the quadrupole sources, i.e.
ΦQ(x, ω) as shown in (2.20), and the sound due to the interaction between the
near-field evanescent wave and the trailing edge of the flat plate, i.e. ΦN(x, ω) as
shown from (2.55) to (2.59), the total sound power spectra is therefore

Φ(x, ω)=ΦQ(x, ω)+ΦN(x, ω). (2.60)

It is useful to review the inputs of this model. First, ΦQ(x, ω) is the sound predicted
using Lighthill’s acoustic analogy. The Green’s function is obtained analytically,
and therefore the input of this part is the time-averaged flow statistics obtained from
RANS. Secondly, the near-field scattering part, e.g. ΦN(x, ω) shown in (2.59), requires
the one-point spectrum and the local convection velocity (varying with frequency as
well) of the near-field pressure fluctuation of an isolated jet at the location where
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the trailing edge of the flat plate would be. It is worth mentioning that though we
perform an LES study in this paper, it is mostly for validation purposes, and the
hybrid model does not directly require the input of the LES (at least for the cases
where the convection velocity curve still applies or is known from experiments or
models of instability waves).

It is worth noting that though the new model requires the near-field pressure
spectrum as an input, this requirement could be removed if the strength of the
evanescent instability waves were predicted by modelling the growth and decay of
the jet instability waves, as is common in instability theory. However, to apply that
to a particular experiment requires data on the perturbations at the nozzle exit. That
information was not available in the experiment of Head & Fisher (1976), but the
near-field pressure was, and we have used that for validation. Therefore, in general, a
prediction model independent of experimental measurement is possible for specified
exit boundary conditions. Though we do not have that information about boundary
conditions to follow this approach, the semi-analytical model developed in the paper
is also very useful in both understanding the underlying physics and developing ideas
to control it. For example, the near-field scattering model proposed in this paper is
nothing more than a transfer function, which maps the input (near-field pressure)
spectrum to the output (far-field sound) spectrum. The fact it works well (as shown
in the next section) confirms the scattering mechanism of the installed jet noise, and
therefore provides evidence of this new sound source as opposed to isolated jets. By
studying this transfer function, we can also understand the transfer efficiency, i.e. at
which frequency the scattering is most efficient. The identification of the sound source
and the understanding of the scattering mechanism is essential for noise reduction
methods.

It should also be noted that while the ambient flow is taken into consideration and
the effect of source motion is accounted for by the model of the fourth-order space–
time correlation function, the model for installed jet noise developed in this section
does not account for the mean jet flow refraction effect. Though this means that the
model cannot correctly predict the far-field sound at high frequencies, it should suffice
for the sound at 90◦ to the jet and for low frequencies. In the next section, we will
use the model developed in this section to predict the installed jet noise spectrum, and
the results will be compared against experimental measurements.

3. Results

In 1976, in order to study the acoustic characteristics of low-frequency enhancement
of the installed jet noise and to identify the corresponding noise sources, Head
& Fisher (1976) presented a series of experimental results of the low-frequency
augmentation of the jet noise with the close presence of a solid shield (flat plate), as
shown in figure 13. There was no ambient flow, so M=0. The experiment was carried
out with a cold, subsonic, round jet (D= 1 inch) at M0= 0.5, the separation distance
between the plate and the jet centreline H= 3D, and the distance between the trailing
edge of the flat plate and the jet nozzle L= 6D. The far-field spectra for both isolated
and installed jet noise were measured, and the microphone was located in the plane
that is perpendicular to the rigid shield, but at 90◦, 45◦ and 30◦ to the jet centreline,
respectively, on both the shielded and reflected sides. Since the rigid shield used in
the experiment was placed sufficiently away from the jet, it can be expected to have
little effect on the jet flow. Thus, in this section we use the two-part model, together
with the inputs from axisymmetric jet flow field obtained in the preceding section,
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Jet nozzle
Jet centreline

r

H

r

r

L

Flat plate

FIGURE 13. The schematic of the experiment of Head & Fisher (1976). The separation
distance between the flat plate and the jet centreline H = 3D, the distance between the
trailing edge of the flat plate and the jet nozzle L= 6D.

to calculate both the isolated and installed jet noise spectra. In the Lighthill acoustic
analogy part, ΦQ(x, ω), the turbulent statistics is obtained from the RANS calculation.
In the near-field scattering part, we use the approximated (2.59) to calculate ΦN(x, ω),
and the spectrum of the near-field evanescent waves at the trailing-edge position was
experimentally measured. But the local convection velocity at this point makes use
of the averaged frequency-dependent velocity obtained from the aforementioned LES
study. The results based on the new model are then compared with the experimental
results.

3.1. Installed jet with acoustic scattering of Lighthill’s quadrupole sources
To demonstrate the existence of the additional near-field scattering mechanism for
installed jet noise, the prediction of the far-field sound power spectrum with only the
contribution of Lighthill’s quadrupole sources, i.e. ΦQ(x, ω), is presented first. The
predictions are compared with the experimental results.

Figure 14(a) shows the sound power spectra at 90◦ to the jet on the shielded
side. The isolated sound spectra are also presented. As can be seen, the predicted
spectrum for an isolated jet has an excellent agreement with experimental results.
This shows that the RANS calculation and the fourth-order correlation model indeed
work well. However, the predicted spectrum for an installed jet does not agree well
with the experimental result. In particular, the predicted spectrum fails to capture the
low-frequency amplification. The reason is because we have not yet incorporated the
near-field scattering mechanism, which will be shown to account for such a noise
intensification. The discrepancy at high frequencies, however, is in fact expected,
since the jet refraction effect must be accounted for in order to correctly predict the
shielding effect of the flat plate.

The noise spectra at 45◦ and 30◦ to the jet are shown in figures 14(b) and 14(c),
respectively. The predicted spectra for isolated jet noise continues to agree well with
experiment at low frequencies. But discrepancies start to appear at high frequencies,
because the jet mean-flow refraction effect cannot be ignored at these angles. For the
installed jet noise, the low-frequency enhancement at low frequencies at 45◦ still fails
to be captured, and the agreement at high frequencies is also affected by the refraction
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FIGURE 14. (Colour online) Comparison between experimental measurements with model
predictions for the far-field sound power spectrum in 1/3 octaves for the installed jet with
only the contribution of Lighthill’s quadrupole sources.

effect of the jet mean flow. But the prediction does indeed give some of the correct
qualitative behaviour.

Figure 14(d) shows the noise power spectra predicted at 90◦ on the reflected side.
For installed jet noise spectra, despite the low-frequency discrepancies, the agreement
at high frequencies is in fact very good. This indicates that the high-frequency
reflection effect can be correctly captured at 90◦ to the jet. Figures 14(e) and 14( f )
present the noise spectra at 45◦ and 30◦, respectively. For installed jet noise, despite
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the large discrepancies caused by the jet refraction effect, it is found that the
qualitative behaviour of the noise increase due to the flat plate observed at high
frequencies is correctly predicted. This suggests that if the refraction effect were
to be included, the model would be able to give much better agreement with the
experiment at high frequencies. It is worth noting that, at all the different observer
angles, the low-frequency amplification cannot be captured, and this suggests that the
near-field scattering mechanism is responsible for the low-frequency noise alteration.

3.2. Installed noise with two source mechanisms
From figures 14(a) to 14( f ), it has been found that the noise spectrum predicted
by incorporating only the contribution of the scattering of the Lighthill’s quadrupole
sources cannot correctly model installed jet noise. In this part of this section, the
contribution of the near-field scattering, i.e. ΦN(x, ω) described in § 2.2, is added. As
mentioned above, the convection velocity of the near-field evanescent wave obtained
by examining the radial decay rate using the LES data is used. We use the averaged
convection velocity profile Uc(ω) obtained by averaging over modes 0 and (±)1. By
combining the frequency-dependent convection velocity Uc(ω) and the experimentally
measured near-field spectrum, the predicted far-field sound spectra at different angles
are compared with experiments.

The sound spectra for both isolated and installed jets on the shielded side are shown
in figures 15(a) to 15(c). As the spectra for isolated jet are identical to those shown
in figure 14, we will focus only on the installed spectra hereafter. The predicted
noise spectra at 90◦ to the jet on the shielded side are presented in figure 15(a). It
can be seen that very good agreement at low frequencies was achieved between the
predicted and experimental results. A few reasons can be guessed to account for the
slight under-prediction near the peak frequencies. First, it can be due to the slight
error of estimated convection velocity, since the scattering is highly sensitive to this
quantity. An experimental error is also possible: since the near-field pressure decays
exponentially in the radial direction, a small misalignment of 2 mm, for example, can
cause a PSD change of up to 2 dB. Given the solid shield used in the experiment can
easily have a thickness of 2 mm, the error could have been easily introduced. The
sound spectra predicted at 45◦ to the jet are shown in figure 15(b). Comparing with
figure 14(b), where not all the low-frequency enhancement is captured, figure 15(b)
does indeed better agree with the experimental results at low frequencies. Similarly,
the sound spectra at 30◦ is shown in figure 15(c), and the agreement with experimental
results is good. As mentioned in the preceding subsection, the high-frequency sound is
not predicted quantitatively, due to the mean-flow refraction effect, but the qualitative
behaviours are successfully captured.

Figure 15(d–f ) show the comparisons on the reflected side. As can be seen from
figure 15(d), the agreement is similar to that at 90◦ on the shielded side. The
low-frequency enhancement is dominated by the near-field scattering, while the
high-frequency amplification is due to the pure reflection effect, which is correctly
captured using Lighthill’s quadrupole sources. The agreement at 45◦ and 30◦ to the jet
is very similar to that on the shielded side. In particular, at 45◦ the model prediction
agrees better with experimental results. The high-frequency deviation, as already
mentioned for the isolated jet, is caused by the refraction effect of the jet mean flow.

Even though overall good agreement between the model predictions and the
experiment results at different observer angles is achieved at low frequencies, it
should be noted that the high-frequency sound at low observer angles cannot be
predicted correctly due to the jet refraction effect. A more accurate model aiming to
include this effect is desired, and will form part of our future work.
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FIGURE 15. (Colour online) Comparison between experimental measurements with model
predictions for the far-field sound power spectrum in 1/3 octaves for the installed jet with
two source mechanisms.

4. Conclusion
This paper develops a low-order model to predict installed jet noise. The model

starts with the development of a half-plane scattering Green’s function. The Green’s
function is then used to solve the Lighthill’s acoustic analogy equation together with
a model for the Lighthill’s quadrupole sources and the mean-flow data obtained
by performing RANS calculations. The additional sound source due to near-field
evanescent wave scattering is accounted for by developing a trailing-edge scattering
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model using Amiet’s approach. Therefore, the resulting far-field sound consists of the
sum of contributions from two source mechanisms: Lighthill’s quadrupole sources
and the near-field evanescent wave scattering. Finally, the proposed model is validated
against experimental measurements.

It is found that when a solid shield (either a wing or a flat plate) is sufficiently far
away from the jet, e.g. when the perpendicular distance between the shield and jet
axis H is greater than 2D, the noise at low frequencies (St < 0.2) due to Lighthill’s
quadrupole sources is hardly affected by the presence of the solid shield. For high
frequencies, however, the far-field sound due to quadrupole sources is either efficiently
shielded at 90◦ to the jet on the shielded side, or enhanced by approximately 3 dB
at 90◦ to the jet on the reflected side. The sound from the quadrupole sources is also
significantly refracted by the jet mean flow for the M0 = 0.5 jet considered. Thus,
at low observer angles, where the refraction effect is significant, only qualitatively
agreement is achieved.

It is shown that the significant low-frequency noise enhancement observed in
installed jet experiments is due to the interaction between the near-field evanescent
wave and the trailing edge of the solid shield near the jet. The evanescent wave
is believed to originate from the Kelvin–Helmholtz instability mechanism. Using
the averaged Uc(ω) obtained from LES and the measured near-field evanescent
pressure spectrum at the position where the trailing edge of the flat plate would be,
the near-field scattering model can successfully predict the noise spectra at various
observer angles. The sound due to near-field scattering, however, is only significant
at low frequencies and negligible at high frequencies.

As already mentioned, one limitation of the two-part model developed in this paper
is that it does not account for the jet refraction effect, which is significant at low
observer angels to the jet for high-frequency sound and non-negligible jet Mach
numbers. Thus, even though the qualitative behaviour of the far-field sound at high
frequencies due to the presence of the flat shield is successfully predicted, quantitative
agreement is not achieved except for the spectrum at 90◦ to the jet on the reflected
side. Another limitation is that the solid shield is assumed to be semi-infinite in the
proposed model, and thus the effect of its side edges is ignored.
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Appendix A

Detailed expression for the directivity terms Dk
ij are shown as follows,

D0
12(y1, y3)=−cos θ̄ (−M + cos ᾱ)

β3

(
E(uR) ei(k/β) cos γ̄ y3 + E(uR′) e−i(k/β) cos γ̄ y3

)
, (A 1a)
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2
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R′ cos
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2
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(A 1b)
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23(y1, y3) = −cos θ̄ cos γ̄
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)
, (A 1c)
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